skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burdette, Shawn_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MorphDeCage (2‐(4‐methoxy‐3‐nitrophenyl)‐2‐morpholinoacetic acid) and PyrDeCage (2‐(4‐methoxy‐3‐nitrophenyl)‐2‐(methyl(pyridin‐2‐ylmethyl)amino)acetic) are Zn2+photocages that utilize photodecarboxylation of the methoxy derivative ofmeta‐nitrophenylacetic acid as the release mechanism. Isothermal titration calorimetry (ITC) was used an alternative to usual approaches to measure the Zn2+binding affinities of these new compounds owing to unsuccessful measurement by competitive titration with 4‐(2‐pyridylazo)resorcinol (PAR). MorphDeCage forms a 1 : 1 ligand‐metal complex with a 106 μM Kdvalue. PyrDeCage forms both a 1 : 1 and 1 : 2 metal: ligand complexes with 3.2 and 21.7 μM Kdvalues respectively. To further demonstrate the efficacy of the ITC methodology and provide a comparison to direct UV‐vis titrations data, two photocages based on Sanger's reagent (SRPs) were prepared. The Kdvalues of the SRPs measured by UV‐vis titration and ITC were internally consistent and support the retraction of the original report (J. Am. Chem. Soc.2020,142, 3806–3813), which was withdrawn due to errors in binding affinity measurements. 
    more » « less
  2. Abstract The methoxy‐ and fluoro‐derivatives ofmeta‐nitrophenylacetic acid (mNPA) chromophores undergo photodecarboxylation with comparable quantum yields (Φ) to unsubstitutedmNPA, but uncage at red‐shifted excitation wavelengths. This observation prompted us to investigate DPAdeCageOMe (2‐[bis(pyridin‐2‐ylmethyl)amino]‐2‐(4‐methoxy‐3‐nitrophenyl)acetic acid) and DPAdeCageF (2‐[bis(pyridin‐2‐ylmethyl)amino]‐2‐(4‐fluoro‐3‐nitrophenyl)acetic acid) as Zn2+photocages. DPAdeCageOMe has a high Φ and exhibits other photophysical properties comparable to XDPAdeCage ({bis[(2‐pyridyl)methyl]amino}(9‐oxo‐2‐xanthenyl) acetic acid), the best preforming Zn2+photocage reported to date. Since the synthesis of DPAdeCageOMe is more straightforward than XDPACage, the new photocage will be a highly competitive tool for biological applications. 
    more » « less